

Mill Test Certificate

Bri-Steel Manufacturing Inc. 2125-64 Avenue, Edmonton, AB Canada T6P 1Z4

Tel: 001 (780) 469-6603

Fax: 001 (780) 469-6986

www.bri-steel.com

Production Date: Feb 18, 2015

Certificate No.: MTR- 001588

ASME B36.10-2004, API 5L-45th Ed. Grade B PSL1, ASTM/ASME A106-2014/SA106-2013 Grade B NDE, A53-2012/SA53-2013 Grade B Type S, NACE MR0175-2009 MR0103-2012 Hot Expansion Product Heat Treatment: As-rolled

Product Markings

Product Standards:

Production Method:

Product:

Seamless Carbon Steel Pipe

Product Heat Number:

BSM-2248

Product Size: 18STD

HEAT BSM-2248 (PIPE # LENGTH MASS) 70.59lb/ft ASTM/ASME A/SA106 GR B A/SA53 GR B NACE MR0175/MR0103 MADE IN CANADA <API & L/C No.> API SPEC 5L NPS 18 STD 0.375 INCHWT GR B PSL1 SMLS 2015/02 NDE 1640PSI

7	BSN			
	BSM-2248		Heat	
	Heat		Test Type	
	NPS 18 STD 0.375in. WT		Product Size	Product: Details
	31		Pieces	
	DRL		Length	
	70.59	lb/ft	Mass	
	~ 5	μR/hr	Geiger	
	<10	Gauss	Res. Mag.	
	Pass	Insp.	Visual	
	Pass		OD	No
	Pass	WT	TU	Non-Destructive Testing
	Pass	ASTM E213 ASTM	TU	ive Testing
	Pass	ASTM	ET	
	Pass	1640PSI/ 5	HydroTest	
	32.5° Bevel	s Condition	End	

Ti Nb B CE(IIW) C	The second secon	The second second	The second secon			100000000000000000000000000000000000000	5000 pt - 5000 Chec						ľ					
Steelmaking Method Test Type C Mn P S Si Cr Cu Mo Ni V Ti Blast Furnace; EAF; Ladle Refining; Vacuum Heat 0.18 0.89 0.014 0.006 0.25 0.03 0.03 0.00 0.01 0.004 -	0.36	0.36	0.0004		0.031	0.006	0.01	0.00	0.03	0.03	0.23	0.008	0.019		0.20	Product		
Chemical Analysis (wt%) Steelmaking Method Test Type C Mn P S Si Cr Cu Mo Ni V Ti	1	-	1	1	-	0.004	0.01	0.00	0.03	0.03	0.25	0.006	0.014	0.89	0.18	Heat	Blast Furnace; EAF; Ladle Refining; Vacuum Degas: Fully Killed	BSM-2248
	CE(CSA)	CE(IIW)	В	Nb	1	٧	Z:	Mo	C	Cr	Si	S	₽	Mn	C	Test Type	Steelmaking Method	Heat
										(wt%)	Analysis (Chemical						

	_	7	<u></u>	_		_
	Heat	01	BSM-2248		Heat	
Standard	Test		Heat		Test Type	
rd	-		Ferrite & Pearlite		Microstructure	
Sample Details	Impact Test					
etails	Test		76 HRBW		Hardness	
റ്	Temp		Pass		Flattening Test	
_			Loı			Mechanical Properties
_	Impact Energy		Longitudinal; 38.1 mm	50r	Tens	al Proper
_	nergy		; 38.1 mr	50mm GL	Tension Test	ties
AVG			n x WT			
%					Yie	
%	% Sh	% Shear	41,700	psi	Yield (Rt0.5)	
%	iear		89		Tens	
AVG			68,000	psi	Tensile (Rm)	5
mm	L		0.61	(Rt0.5/Rm	۲/۲	
mm	Lateral Expansion	STATE OF THE PARTY.		n)		
m m	pansion		47	%	Elongation (A)	
AVG					on (A)	

Additional Details:

BSM-2248

- ✓ We hereby certify that this pipe product was manufactured, sampled, tested and inspected by Bri-Steel Manufacturing Inc. in accordance with API SL-45th Ed., ASTM/ASME A106-2014/SA106-2013 Grade B A53-2012/SA53-2013, and the purchase order requirements, and that the results meet the corresponding requirements. Bri-Steel Manufacturing is registered and certified to ISO-9001:2008 and API Q1.
- ✓ This pipe product meets the sour service requirements of NACE MR0175/ISO 15156-2:2009 Annex A2 for Region 3 Sour Service-2009 NACE MR0103-2012 Section 2.1
- No weld repairs have been performed on this product.
- \checkmark This product has not come into contact with mercury during the Bri-Steel Manufacturing processes
- \checkmark This certificate represents a quality control system that is compliant with EN 10204:2004 Type 3.1.

Mill Test Certificate approved by:

Tonya Lam, C.E.T.

Assistant QA Manager